Air Quality Forecasting Tools

OVERVIEW

- Background
- Acquiring historical data
- Forecasting tools (examples, strengths/weaknesses)
 - Climatology
 - Statistical
 - Modeling

Details on developing forecasting methods are provided in the Ozone and $PM_{2.5}$ Forecasting Guidance Document (U.S. Environmental Protection Agency, 2003).

Background

- Forecasters use a variety of data products, information, tools, and experience to predict air quality.
- Forecasting tools:
 - Subjective
 - Objective
- Tools provide information to help guide the forecasting process.
- Forecasting tools are built upon an understanding of the processes that control air quality.
- More forecasting tools = better results.

Background

Tool development is a function of:

- Amount and quality of data (AQ and meteorological)
- Resources for development (human, software, computing)
- Resources for operations (human, software, computing)

Types of tools:

- Persistence
- Climatology*
- Criteria, Thresholds, Rules of thumb
- Regression equations*
- Classification and Regression Trees (CART)*
- Neural networks
- Fuzzy logic
- Numerical modeling*
- Conceptual and experience

Fewer resources, lower accuracy

More resources, potential for higher accuracy

^{*}Discussed in this course

Acquiring Historical Data (1 of 2)

Sources

- Air Quality Data
 - EPA's AIRS database
 - AIRNow (regional images)
- Meteorological Data
 - See Appendix for list of data sources
 - Soundings and surface observations
 - Data and weather maps
 - Trajectories
 - Satellite images

Acquiring Historical Data (2 of 2)

Sample size

- Acquire 3 to 5 years of data
- Be aware of changes in emissions (fuel changes, new sources, new monitors)

Other issues

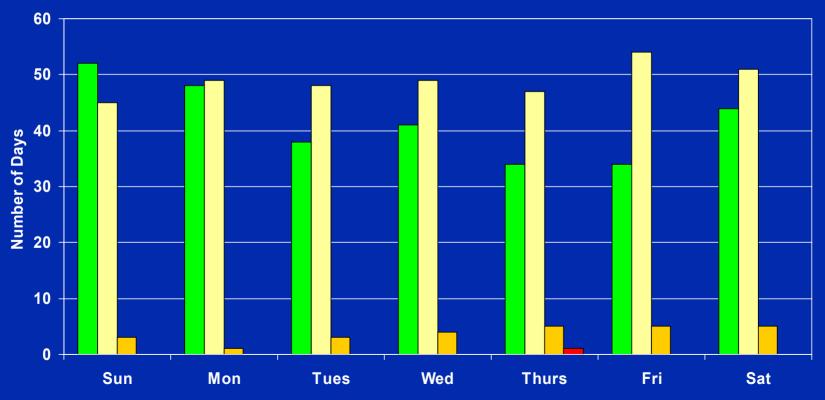
- Time standard and units
 - Air quality data are usually in Local Standard Time
 - Meteorological data are usually in UTC
 - Concentrations in μg/m³, ppm, ppb
- Data quality
 - Review data for quality prior to use
- Data completeness
 - 75% of data are needed to compute daily, monthly, and annual averages

Climatology

- Study of average and extreme weather (or air quality) conditions
- Examines past conditions for
 - Maximum and minimum values
 - Duration of poor air quality days
 - Average number of days in each AQI category
 - Diurnal patterns
 - Day-of-week distributions
 - Weekend/weekday distributions
- Helps guide forecasters

Climatology – Example (1 of 2)

Monthly distribution of AQI days based on PM_{2.5} for Baltimore, MD (1999-2001)


•

•

Climatology – Example (2 of 2)

Day-of-week distribution of AQI days based on PM_{2.5} for Baltimore, MD (1999-2001)

- Good
- **■** Moderate
- **■** Unhealthy for SG
- Unhealthy

•

Climatology

Strengths

- Easy to develop and update
- Helps guide the forecast

Weaknesses

- Not a stand-alone method
- Does not provide pollutant concentrations

Statistical – Examples

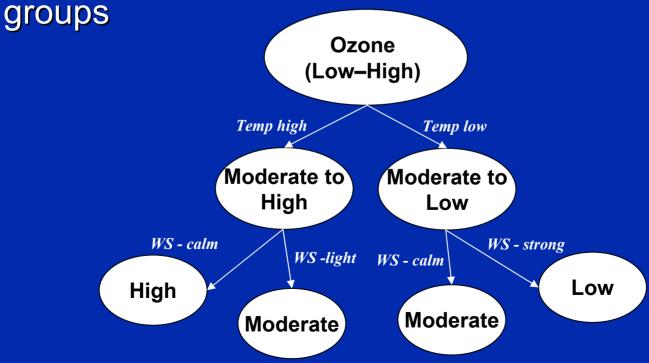
- Develop statistical relationship between historical air quality and meteorological data
- Several methods
 - Regression
 - Classification and Regression Trees (CART)

Statistical – Example (1 of 3)

PM_{2.5} Regression Equation

 $PM_{2.5} (\mu g/m^3) = 53.429 + 3.382*Holiday - 0.189*Precip - 0.31*Tmax$

- 0.541*SurfaceWS + 1.008*(T@700mb - Tmin)

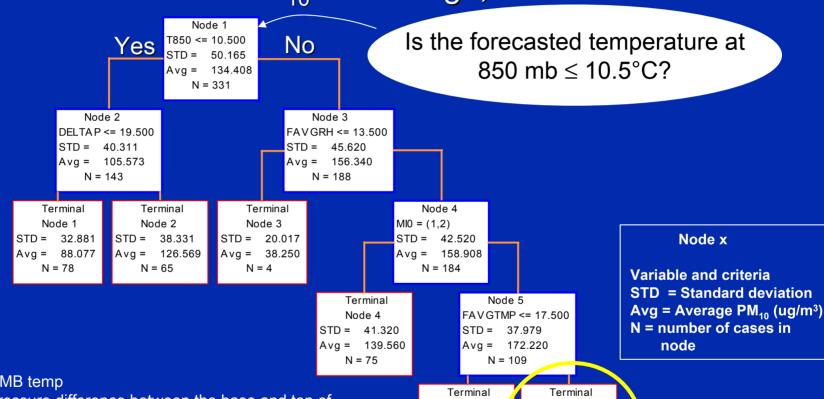

+ 0.838*(Stability) + 0.183*Td@700mb00Z - 0.292*WS@850mb00Z

Variable	Description
Holiday	1 for Valentine's Day, Martin Luther King, Jr. Day, Presidents' Day, Veterans' Day, and Super Bowl Sunday. 2 for Thanksgiving weekend and Christmas Eve through New Year's Day. 1 for weekends immediately preceding or following any of the above holidays. 0 for all other days.
Precip	Forecasted precipitation in inches during the 24-hr forecast period.
Tmax	Forecasted daytime maximum temperature (°F)
SurfaceWS	Average resultant wind speed from 12Z to 00Z (0500 to 1700 MST)
T@700mb	Temperature at 700 mb at 12Z (0500 MST) (°C)
Tmin	Forecasted or observed minimum temperature (°C)
Stability	Temperature at 700 mb at 00Z (1700 MST) (°C) minus the forecasted daytime maximum temperature (°C) at the surface
Td@700mb00Z	Dew-point temperature at 700 mb at 00Z (1700 MST) (°C)
WS@850mb00Z	Wind speed at 850 mb at 00Z (1700 MST) (m/s)

Statistical – Example (2 of 3)

- Classification and Regression Trees (CART)
- Software develops the decision tree with human guidance

CART splits data sets into similar and dissimilar



•

•

Statistical – Example (3 of 3)

CART classification PM₁₀ in Santiago, Chile

Node 5

STD = 36.222

Avg = 183.80

N = 75

Node 6

STD = 27.961

Avg = 146.676

N = 34

Variables:

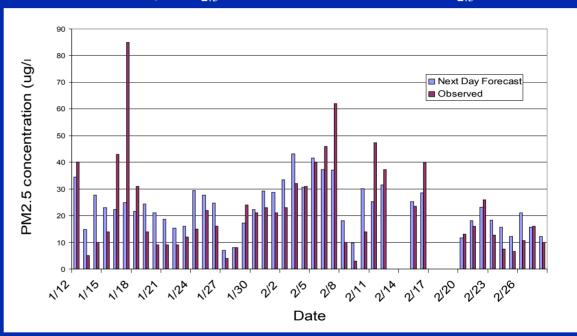
•

T850 - 12Z 850 MB temp

DELTAP - the pressure difference between the base and top of the inversion

MIO - Synoptic weather potential (scale from 1-low to 5-high). *FAVGTMP* - 24-hour average temperature at La Paz

FAVGRH - 24-hour average relative humidity at La Paz.

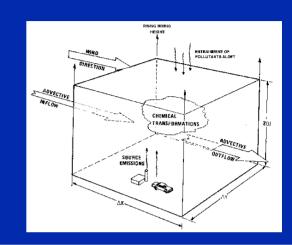

Cassmassi (1999)

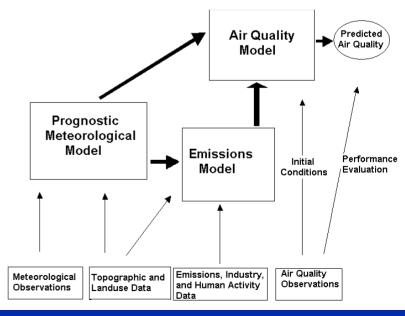
Statistical

Strengths

- Easy to operate
- Provides
 concentration
 or AQI category
 estimates

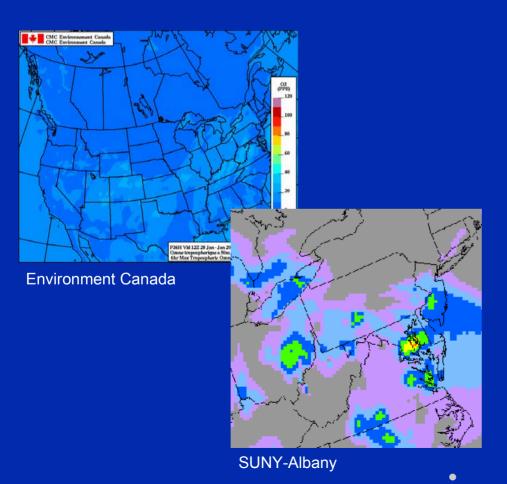
Salt Lake City, UT Next Day PM_{2.5} Forecast and Observed PM_{2.5}

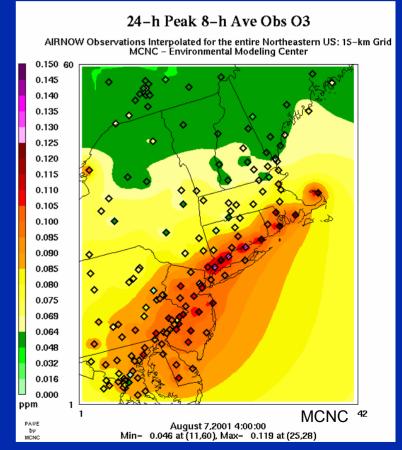



Weaknesses

- Requires more expertise to develop
- Must be updated every three years or so
- Tends to underpredict peak concentrations

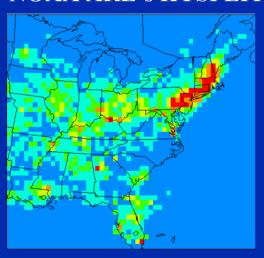
Modeling

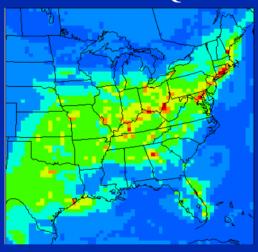

- Numerically model the processes
- Requirements:
 - Gridded emission model
 - Meteorological model forecasts
 - Photochemical model
 - Other supporting data
 - Land use
 - Boundary conditions (air quality)
 - Computer resources
- More sources of uncertainty



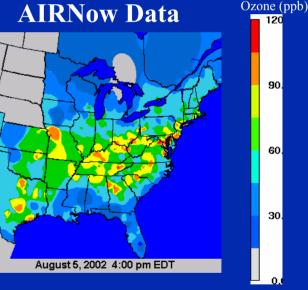
Modeling – Example (1 of 2)

Research and operational modeling is being conducted by a number of organizations: Environment Canada, MCNC, NOAA, Ohio State, Sonoma Technology, Inc., SUNY-Albany, Washington University




Modeling – Example (2 of 2)

Ozone concentration forecasts and observations on August 5, 2002, at 0400 EDT

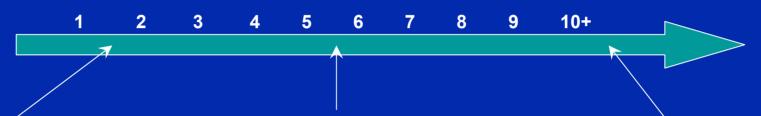

NOAA ARL'S HYSPLIT

MCNC's MAQSIP

AIRNow Data

Modeling

Strengths


- Based on atmospheric and chemistry physics
- Provides forecasts in areas without monitors
- Helps further explain air quality processes
- Provides better temporal resolution than other methods

Weaknesses

- High level of expertise and funding needed to develop, operate, and improve*
- Requires substantial computer resources
 - * NOAA is planning to run a model and provide forecast guidance to air quality forecasters.

Evolution of Forecasting Programs

Age of Forecasting Program (years)

- Limited data
- Limited experience and understanding
- One forecasting tool/technique
- Modest accuracy

- Good historical data set
- Good understanding
- Modest experience
- Several forecasting tools/techniques
- Higher accuracy

- Excellent historical data set
- Detailed understanding
- Extensive experience
- Many forecasting tools/techniques
- Highest accuracy

Summary

Air Quality Forecasting Tools

- Data availability and quality
- Develop understanding
- Develop tools
- The more tools the better
- Next step Lunch
- Questions